Letter to the Editors

New solvable systems of 2 first-order nonlinearly-coupled ordinary differential equations

Francesco Calogero ${ }^{a, b, 1,2}$ and Farrin Payandeh ${ }^{c, 3,4}$
${ }^{a}$ Physics Department, University of Rome "La Sapienza", Rome Italy
${ }^{b}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1
${ }^{c}$ Department of Physics, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran
${ }^{1}$ francesco.calogero@uniroma1.it, ${ }^{2}$ francesco calogero@roma1.infn.it
${ }^{3}$ f_payandeh@pnu.ac.ir, ${ }^{4}$ farrinpayandeh@yahoo.com

Received September 14, 2022; Accepted September 26, 2022

Abstract

In this short communication we introduce a rather simple autonomous system of 2 nonlinearly-coupled first-order Ordinary Differential Equations (ODEs), whose initialvalues problem is explicitly solvable by algebraic operations. Its ODEs feature 2 righthand sides which are the ratios of 2 homogeneous polynomials of first degree divided by the same homogeneous polynomial of second degree. The model features only 4 arbitrary parameters. We also report its isochronous variant featuring 4 nonlinearlycoupled first-order ODEs in 4 dependent variables, featuring 9 arbitrary parameters

In this short communication we introduce a rather simple autonomous system of 2 nonlinearly-coupled first-order Ordinary Differential Equations (ODEs) which features solutions obtainable by algebraic operations; and we report the explicit solution of its initial-values problem. To the best of our knowledge these findings are new; but since the corresponding literature includes an enormous number of entries over at least 2 centuries we cannot be quite certain.

The technique we have used to arrive at these results is fairly simple, but we shall not describe it (the expert reader shall easily guess it from the results reported below); we shall describe it in a separate paper [1] also reporting several other examples of algebraically solvable systems of 2 first-order nonlinear ODEs.

The system of ODEs on which we focus reads as follows:

$$
\begin{equation*}
\dot{x}_{1}(t)=\frac{x_{1}(t)+\alpha_{1} x_{2}(t)}{\beta_{1}\left[x_{1}(t)\right]^{2}+\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) x_{1}(t) x_{2}(t)+\beta_{2}\left[x_{2}(t)\right]^{2}}, \tag{1a}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\dot{x}_{2}(t)=-\frac{x_{2}(t)+\alpha_{2} x_{1}(t)}{\beta_{1}\left[x_{1}(t)\right]^{2}+\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) x_{1}(t) x_{2}(t)+\beta_{2}\left[x_{2}(t)\right]^{2}} . \tag{1b}
\end{equation*}
$$

\]

Notation: t is the independent variable (one might think of it as time); $x_{n}(t)$ are the 2 dependent variables; the superimposed dot denotes t-differentiation; α_{n} and $\beta_{n}(n=1,2)$ are 4 (t-independent) arbitrary parameters. 2 additional parameters γ_{1} and γ_{2} might of course be introduced by rescaling the 2 dependent variables $\left(x_{n}(t) \Rightarrow \gamma_{n} x_{n}(t)\right)$; while no third parameter γ can be additionally introduced by rescaling the independent variable t, since the system (1) is clearly invariant under the common rescaling $x_{n}(t) \Rightarrow \gamma x_{n}(t)$, $t \Rightarrow \gamma t$.

Proposition: the solution of the initial-values problem of this system (11) reads as follows:

$$
\begin{equation*}
x_{n}(t)=\left(\gamma_{n 1} \sqrt{1+t / t_{1}}+\gamma_{n 2} \sqrt{1+t / t_{2}}\right), \quad n=1,2 \tag{2}
\end{equation*}
$$

with

$$
\begin{align*}
& \gamma_{11}=\frac{b_{2}\left[b_{1} x_{1}(0)+a_{2} x_{2}(0)\right]}{b_{1} b_{2}-a_{1} a_{2}}, \quad \gamma_{22}=\frac{b_{1}\left[a_{1} x_{1}(0)+b_{2} x_{2}(0)\right]}{b_{1} b_{2}-a_{1} a_{2}} \tag{3a}\\
& \gamma_{12}=\frac{-a_{2}\left[a_{1} x_{1}(0)+b_{2} x_{2}(0)\right]}{b_{1} b_{2}-a_{1} a_{2}}, \quad \gamma_{21}=\frac{-a_{1}\left[b_{1} x_{1}(0)+a_{2} x_{2}(0)\right]}{b_{1} b_{2}-a_{1} a_{2}} \tag{3b}\\
& b_{1}=2 \beta_{1}-\alpha_{2}\left(r+\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right), \quad b_{2}=-2 \beta_{2}+\alpha_{1}\left(r+\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \tag{3c}\\
& a_{n}=(-)^{n+1} r+\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}, \quad n=1,2 \tag{3~d}\\
& r=\sqrt{\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)^{2}-4 \beta_{1} \beta_{2}}, \tag{3e}\\
& t_{1}=-\eta / \eta_{1}, \quad t_{2}=\eta / \eta_{2}, \tag{3f}\\
& \eta=\left(\gamma_{12} \gamma_{21}-\gamma_{11} \gamma_{22}\right)\left\{\beta_{1}\left[x_{1}(0)\right]^{2}+\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) x_{1}(0) x_{2}(0)+\beta_{2}\left[x_{2}(0)\right]^{2}\right\} \tag{3~g}\\
& \eta_{1}=2\left[\left(\alpha_{2} \gamma_{12}+\gamma_{22}\right) x_{1}(0)+\left(\gamma_{12}+\alpha_{1} \gamma_{22}\right) x_{2}(0)\right] \tag{3h}\\
& \eta_{2}=2\left[\left(\alpha_{2} \gamma_{11}+\gamma_{21}\right) x_{1}(0)+\left(\gamma_{11}+\alpha_{1} \gamma_{21}\right) x_{2}(0)\right] \tag{3i}
\end{align*}
$$

Remark 1. The formulas written above provide the explicit definition (up to the implicit sign ambiguities due to the square-roots appearing in them) of the initial-values problem of the system of ODEs (1), in terms of the 4 parameters α_{n} and $\beta_{n}(n=1,2)$ featured by the system of 2 ODEs (1). The skeptical reader who wishes to check that the formulas (2) with (3) provide the solution of the initial-value problem of the system of ODEs (11) is of course welcome to do so!

Remark 2. Because of the sign ambiguities due to the square-roots appearing in the formulas (22) and (3e), it might appear that the formulas (22) are inadequate to provide
the solution of the initial-values problem of the system of ODEs (1). But it is easy to check that the formulas (2) with (3) become identities at $t=0$, with the most obvious assignment of the square-roots; and thereafter they provide a well-defined definition of the solution for all time by continuity in the independent variable t. Of course a singularity may then be hit if the time-evolution causes the argument of one of the 2 square-roots $\sqrt{1+t / t_{n}}(n=1,2)$ appearing in the right-hand of the 2 eqs. (2) to vanish; but this is a natural feature of nonlinear systems of evolution equations.

Remark 3. Because the 2 ODEs of the system (11) feature right-hand sides which are homogeneous in the 2 dependent variables $\tilde{x}_{1}(t)$ and $\tilde{x}_{2}(t)$, and its solutions depend in a simple manner on the time variable t (see (2)), the more general system

$$
\begin{align*}
& \dot{\tilde{x}}_{1}(t)=\mathbf{i} \omega \tilde{x}_{1}(t)+\frac{\tilde{x}_{1}(t)+\alpha_{1} \tilde{x}_{2}(t)}{\beta_{1}\left[\tilde{x}_{1}(t)\right]^{2}+\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \tilde{x}_{1}(t) \tilde{x}_{2}(t)+\beta_{2}\left[\tilde{x}_{2}(t)\right]^{2}} \tag{4a}\\
& \dot{\tilde{x}}_{2}(t)=\mathbf{i} \omega \tilde{x}_{2}(t)-\frac{\tilde{x}_{2}(t)+\alpha_{2} \tilde{x}_{1}(t)}{\beta_{1}\left[\tilde{x}_{1}(t)\right]^{2}+\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \tilde{x}_{1}(t) \tilde{x}_{2}(t)+\beta_{2}\left[\tilde{x}_{2}(t)\right]^{2}} \tag{4b}
\end{align*}
$$

where $\mathbf{i}=\sqrt{-1}$ is the imaginary unit and ω is an arbitrary nonvanishing real parameter, is isochronous: all its nonsingular solutions are completely-periodic in the (real) time variables t, with a period which is 4 times (or for a subset of solutions only 2 times) the basic period $T=\pi /|\omega|$: see [2]. But of course, due to the presence of the imaginary unit \mathbf{i} (see (41)), this system (4) of ODEs lives in the complex world, namely its 2 dependent variables $\tilde{x}_{1}(t)$ and $\tilde{x}_{2}(t)$ must, and its 4 parameters α_{n} and $\beta_{n}(n=1,2)$ may, be considered to be complex numbers; so, in terms of real variables and real parameters, it amounts to a system of 4 nonlinear ODEs in 4 real dependent variables featuring 9 arbitrary real parameters. The fact that such a system-that the interested reader might like to write out explicitly - is isochronous seems a remarkable finding; possibly relevant in applicative contexts.

Final remark. The results reported above imply that the 2 variables $x_{n}(t)$ or $\tilde{x}_{n}(t)$ evolve in time as a linear superposition with constant coefficients of 2 simple functions of time: see (11). This is likely to motivate the experts on systems of nonlinear evolution equations to consider the finding reported in this short communication to be rather trivial. On the other hand practitioners might find that the systems of 2 nonlinear systems of ODEs (1) or (4) describe interesting phenomenologies. So it might be useful that the scientific community become aware of this finding; which might possibly deserve to be recorded in the website EqWorld.

Acknowledgements

The authors like to thank our colleague Robert Conte for very fruitful discussions. FP would like to thank Payame Noor University for financial support to this research.

References

[1] F. Calogero and F. Payandeh, "New solvable systems of first-order nonlinear ordinary differential equations", (to be published).
[2] F. Calogero, Isochronous Systems, Oxford University Press, 2008, Oxford, U. K.; ISBN 978-0-19-953528-6 (264 pages); updated paperback, 2012, ISBN 978-0-19-965752-0.

[^0]: (C) The author(s). Distributed under a Creative Commons Attribution 4.0 International License

